Linear Geometric ICA: Fundamentals and Algorithms

نویسندگان

  • Fabian J. Theis
  • Andreas Jung
  • Carlos García Puntonet
  • Elmar Wolfgang Lang
چکیده

Geometric algorithms for linear independent component analysis (ICA) have recently received some attention due to their pictorial description and their relative ease of implementation. The geometric approach to ICA was proposed first by Puntonet and Prieto (1995). We will reconsider geometric ICA in a theoretic framework showing that fixed points of geometric ICA fulfill a geometric convergence condition (GCC), which the mixed images of the unit vectors satisfy too. This leads to a conjecture claiming that in the nongaussian unimodal symmetric case, there is only one stable fixed point, implying the uniqueness of geometric ICA after convergence. Guided by the principles of ordinary geometric ICA, we then present a new approach to linear geometric ICA based on histograms observing a considerable improvement in separation quality of different distributions and a sizable reduction in computational cost, by a factor of 100, compared to the ordinary geometric approach. Furthermore, we explore the accuracy of the algorithm depending on the number of samples and the choice of the mixing matrix, and compare geometric algorithms with classical ICA algorithms, namely, Extended Infomax and FastICA. Finally, we discuss the problem of high-dimensional data sets within the realm of geometrical ICA algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How to generalize geometric ICA to higher dimensions

Geometric algorithms for linear independent component analysis (ICA) have recently received some attention due to their pictorial description and their relative ease of implementation. The geometric approach to ICA has been proposed first by Puntonet and Prieto [6] in order to separate linear mixtures. One major drawback of geometric algorithms is, however, an exponentially rising number of sam...

متن کامل

A Thinning Method of Linear And Planar Array Antennas To Reduce SLL of Radiation Pattern By GWO And ICA Algorithms

In the recent years, the optimization techniques using evolutionary algorithms have been widely used to solve electromagnetic problems. These algorithms use thinning the antenna arrays with the aim of reducing the complexity and thus achieving the optimal solution and decreasing the side lobe level. To obtain the optimal solution, thinning is performed by removing some elements in an array thro...

متن کامل

A Theoretic Model for Linear Geometric Ica

Geometric algorithms for linear ICA have recently received some attention due to their pictorial description and their relative ease of implementation. The geometric approach to ICA has been proposed first by Puntonet and Prieto [1] [2] in order to separate linear mixtures. We will reconsider geometric ICA in a solid theoretic framework showing that fixpoints of geometric ICA fulfill a so calle...

متن کامل

A geometric algorithm for overcomplete linear ICA

Geometric algorithms for linear quadratic independent component analysis (ICA) have recently received some attention due to their pictorial description and their relative ease of implementation. The geometric approach to ICA has been proposed first by Puntonet and Prieto [1] [2] in order to separate linear mixtures. We generalize these algorithms to overcomplete cases with more sources than sen...

متن کامل

Fastgeo - a Histogram Based Approach to Linear Geometric Ica

Guided by the principles of neural geometric ICA, we present a new approach to linear geometric ICA based on histograms rather than basis vectors. Considering that the learning process converges to the medians and not the maxima of the underlying distributions restricted to the receptive fields of the corresponding neurons, we observe a considerable improvement in separation quality of differen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural computation

دوره 15 2  شماره 

صفحات  -

تاریخ انتشار 2003